137 research outputs found

    Toward Simultaneous Velocity and Density Measurements Using FLEET and Laser Rayleigh Scattering

    Get PDF
    Femtosecond laser electronic excitation tagging (FLEET) velocimetry and laser Rayleigh scattering are conducted concurrently and are evaluated for their suitability to measure velocity and density simultaneously in NASA Langleys 0.3-m Transonic Cryogenic Tunnel. FLEET velocimetry measurements are shown to be accurate to within 1.5 percent of the measured velocity throughout the facility testing envelope and exhibit a zero-velocity precision of 0.4 m/s. Rayleigh scattering density measurements indicate a characteristically linear dependence on flow density while having an accuracy within 5.4 percent of the measured density and a precision less than or equal to 6 percent. The preliminary assessment indicates that the joint technique would be advantageous for deployment in high-pressure, cryogenic test facilities

    Nitric Oxide PLIF Measurements in the Hypersonic Materials Environmental Test System (HYMETS)

    Get PDF
    A nonintrusive laser-based measurement system has been applied for the first time in the HYMETS (Hypersonic Materials Environmental Test System) 400 kW arc-heated wind tunnel at NASA Langley Research Center. Planar laser-induced fluorescence of naturally occurring nitric oxide (NO) has been used to obtain instantaneous flow visualization images, and to make both radial and axial velocity measurements. Results are presented at selected facility run conditions, including some in simulated Earth atmosphere (75% nitrogen, 20% oxygen, 5% argon) and others in simulated Martian atmosphere (71% carbon dioxide, 24% nitrogen, 5% argon), for bulk enthalpies ranging from 6.5 MJ/kg to 18.4 MJ/kg. Flow visualization images reveal the presence of large scale unsteady flow structures, and indicate nitric oxide fluorescence signal over more than 70% of the core flow for bulk enthalpies below about 11 MJ/kg, but over less than 10% of the core flow for bulk enthalpies above about 16 MJ/kg. Axial velocimetry was performed using molecular tagging velocimetry (MTV). Axial velocities of about 3 km/s were measured along the centerline. Radial velocimetry was performed by scanning the wavelength of the narrowband laser and analyzing the resulting Doppler shift. Radial velocities of ±0.5 km/s were measured

    Rapid Optical Shutter, Chopper, Modulator and Deflector

    Get PDF
    An optical device with a light source and a detector is provided. A digital micromirror device positioned between the detector and the light source may deflect light beams projected from the light source. An aperture in front of the detector may block an incoming light beam from the detector when the incoming light beam is incident on the detector outside of a passable incident range and including an aperture opening configured to pass the incoming light beam to the detector when the incoming light beam is incident on the detector within a passable incident range. The digital micromirror device may rotate between a first position causing the light beam to pass through the aperture opening and a second position causing the light beam to be blocked by the aperture. The optical device may be configured to operate as a shutter, chopper, modulator and/or deflector

    Numerical Investigation of PLIF Gas Seeding for Hypersonic Boundary Layer Flows

    Get PDF
    Numerical simulations of gas-seeding strategies required for planar laser-induced fluorescence (PLIF) in a Mach 10 air flow were performed. The work was performed to understand and quantify adverse effects associated with gas seeding and to compare different flow rates and different types of seed gas. The gas was injected through a slot near the leading edge of a flat plate wedge model used in NASA Langley Research Center's 31- Inch Mach 10 Air Tunnel facility. Nitric oxide, krypton, and iodine gases were simulated at various injection rates. Simulation results showing the deflection of the velocity field for each of the cases are presented. Streamwise distributions of velocity and concentration boundary layer thicknesses as well as vertical distributions of velocity, temperature, and mass distributions are presented for each of the cases. Relative merits of the different seeding strategies are discussed

    Micro-LiDAR velocity, temperature, density, concentration sensor

    Get PDF
    A light scatter sensor includes a sensor body in which are positioned a plurality of optical fibers. The sensor body includes a surface, in one end of each of the optical fibers terminates at the surface of the sensor body. One of the optical fibers is an illumination fiber for emitting light. A plurality of second optical fibers are collection fibers for collecting scattered light signals. A light sensor processor is connected to the collection fibers to detect the scattered light signals

    Design of a Multi-Color Plenoptic Camera for Snapshot Hyperspectral Imaging

    Get PDF
    The design of a custom camera lens including: a two-lens optical system, filter array, and iris has been developed enabling a greyscale plenoptic camera to acquire full field-of-view, 2D, instantaneous hyperspectral measurements. This work focuses on the use of 7 discrete color filters and their effect on the image quality. It was determined that the placement of the filters inside the aperture plane of the camera was paramount to mitigating image artifacts. In addition, design rules were developed such that the optimal optical parameters (image distance, working distance, and focal length) can be easily determined from a few charts

    100-kHz Rate Rayleigh Imaging for Combustion and Flow Diagnostics

    Get PDF
    Two-dimensional (2D) Rayleigh scattering (RS) imaging at an ultrahigh repetition rate of 100 kHz is demonstrated in non-reacting and reacting flows employing a high-energy burst-mode laser system. Image sequences of flow mixture fraction were directly derived from high-speed RS images. Additionally, a 2D instantaneous flow velocity field at 100 kHz was obtained through optical-flow-based analysis of the RS images. The technique was also applied to study turbulent flames having a near-constant Rayleigh cross section. The demonstrated high-speed RS technique in conjunction with optical-flow-based analysis provides non-intrusive, simultaneous measurements of the flow mixing and velocity field, extending the measurement capability of the RS technique to high-speed non-reacting and reacting flows

    Rayleigh Scattering Density Measurements from Ultrafast Lasers in High-Pressure, Cryogenic Wind Tunnels

    Get PDF
    The Rayleigh scattering signal from femtosecond laser pulses is examined for its utility at making instantaneous density measurements in the NASA Langley 0.3-m Transonic Cryogenic Tunnel. An electron-multiplying CCD camera is used to visualize Rayleigh scattering signal taken concurrently with velocity measurements utilizing the femtosecond laser tagging velocimetry technique (FLEET). The results indicate a strong potential for making instantaneous measurements. Viable single-shot images are obtained over the full operational envelope of the facility, and shot-to-shot variations are found to be on average 6 percent (at 95 percent confidence level) and tend to decrease as the facility density is increased. The Rayleigh scattering signals observed before the optical focus exhibit a characteristically linear dependence on the mass-density of the gas, while signals after the focus exhibit a nonlinear (sublinear) density dependence, indicative of stronger absorption at higher densities. The measured Rayleigh scattering signals compare favorably to theoretical assessments made at the tunnel operating conditions

    Unseeded Velocity Measurements Around a Transonic Airfoil Using Femtosecond Laser Tagging

    Get PDF
    Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0, 3.5, and 7. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack. Velocity measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty as they relate to the present experiments. Measurement precisions as low as 1 m/s were observed, while the velocity dynamic range was found to be nearly a factor of 500. The spatial resolution of between 1 mm and 5 mm was found to be primarily limited by the FLEET spot size and advection of the flow. Overall measurement uncertainties ranged from 3 to 4 percent

    Pressure Monitoring Using Hybrid fs/ps Rotational CARS

    Get PDF
    We investigate the feasibility of gas-phase pressure measurements at kHz-rates using fs/ps rotational CARS. Femtosecond pump and Stokes pulses impulsively prepare a rotational Raman coherence, which is then probed by a high-energy 6-ps pulse introduced at a time delay from the Raman preparation. Rotational CARS spectra were recorded in N2 contained in a room-temperature gas cell for pressures from 0.1 to 3 atm and probe delays ranging from 10-330 ps. Using published self-broadened collisional linewidth data for N2, both the spectrally integrated coherence decay rate and the spectrally resolved decay were investigated as means for detecting pressure. Shot-averaged and single-laser-shot spectra were interrogated for pressure and the accuracy and precision as a function of probe delay and cell pressure are discussed. Single-shot measurement accuracies were within 0.1 to 6.5% when compared to a transducer values, while the precision was generally between 1% and 6% of measured pressure for probe delays of 200 ps or more, and better than 2% as the delay approached 300 ps. A byproduct of the pressure measurement is an independent but simultaneous measurement of the gas temperature
    corecore